Significant Lead-Induced Tricuspid Regurgitation Prognosis
Significant Lead-Induced Tricuspid Regurgitation Prognosis
Background. Although the presence of an RV lead is a potential cause of tricuspid regurgitation (TR), the clinical impact of significant lead-induced TR is unknown.
Objective. To evaluate the effect of significant lead-induced TR on cardiac performance and long-term outcome after cardioverter-defibrillator (ICD) or pacemaker implantation.
Methods. A retrospective cohort of 239 ICD (n=191) or pacemaker (n=48) recipients (age 60±14 years, 77% male) from a tertiary care university hospital, with an echocardiographic evaluation before and within 1–1.5 years after device implantation were included. Significant lead-induced TR was defined as TR worsening, reaching a grade ≥2 at follow-up echocardiography. During long-term follow-up (median 58, IQR 35–76 months), all-cause mortality and heart failure related events were recorded.
Results. Before device implantation, most patients had TR grade 1 or 2 (64.0%) or no TR (33.9%), but after lead placement, significant TR was seen in 91 patients (38%). Changes in cardiac volumes and function at follow-up were similar between patients with and without significant lead-induced TR, except for larger RV diastolic area (17±6mm vs 16±5mm, p=0.009), larger right atrial diameter (39±10 mm vs 36±8 mm, p<0.001) and higher pulmonary arterial pressures (41±15 mm Hg vs 33±10 mm Hg, p<0.001) in patients with significant lead-induced TR. Patients with significant lead-induced TR had worse long-term survival (HR=1.687, p=0.040) and/or more heart failure related events (HR=1.641, p=0.019). At multivariate analysis, significant lead-induced TR was independently associated with all-cause mortality (HR=1.749, p=0.047) together with age, LVEF and percentage RV pacing.
Conclusions. Significant lead-induced TR is associated with poor long-term prognosis.
Trivial tricuspid regurgitation (TR) is a common echocardiographic finding in healthy individuals. However, significant TR (grade ≥2) has been shown to be associated with poor prognosis, regardless of the underlying cardiac pathology. Significant TR may be a primary valvular disease (due to valve lesion) or secondary to tricuspid annular dilatation and/or RV remodelling. In addition, placement of an RV (trans-tricuspid) lead has also been associated with a higher risk of TR. However, the incidence of lead-induced TR, time course and effects on long-term outcome remain unknown. Previous studies have reported the incidence of TR immediately after implantation, focusing on the potential mechanisms of valve dysfunction (perforation, impingement, adherence to the leaflets). However, data on the long-term incidence of TR after device implantation and, more importantly, data on the impact of significant TR on cardiac performance and clinical outcome, are still lacking. Increasing treatment with devices, with growing numbers of implanted pacemakers (PMs) and cardioverter-defibrillators (ICDs), and ageing of the population may result in an increased incidence of lead-induced TR, with important clinical consequences. Therefore, the objective of this evaluation was first, to assess the incidence of significant lead-induced TR at long-term follow-up and second, to evaluate the impact of significant lead-induced TR on cardiac performance and on long-term prognosis.
Abstract and Introduction
Abstract
Background. Although the presence of an RV lead is a potential cause of tricuspid regurgitation (TR), the clinical impact of significant lead-induced TR is unknown.
Objective. To evaluate the effect of significant lead-induced TR on cardiac performance and long-term outcome after cardioverter-defibrillator (ICD) or pacemaker implantation.
Methods. A retrospective cohort of 239 ICD (n=191) or pacemaker (n=48) recipients (age 60±14 years, 77% male) from a tertiary care university hospital, with an echocardiographic evaluation before and within 1–1.5 years after device implantation were included. Significant lead-induced TR was defined as TR worsening, reaching a grade ≥2 at follow-up echocardiography. During long-term follow-up (median 58, IQR 35–76 months), all-cause mortality and heart failure related events were recorded.
Results. Before device implantation, most patients had TR grade 1 or 2 (64.0%) or no TR (33.9%), but after lead placement, significant TR was seen in 91 patients (38%). Changes in cardiac volumes and function at follow-up were similar between patients with and without significant lead-induced TR, except for larger RV diastolic area (17±6mm vs 16±5mm, p=0.009), larger right atrial diameter (39±10 mm vs 36±8 mm, p<0.001) and higher pulmonary arterial pressures (41±15 mm Hg vs 33±10 mm Hg, p<0.001) in patients with significant lead-induced TR. Patients with significant lead-induced TR had worse long-term survival (HR=1.687, p=0.040) and/or more heart failure related events (HR=1.641, p=0.019). At multivariate analysis, significant lead-induced TR was independently associated with all-cause mortality (HR=1.749, p=0.047) together with age, LVEF and percentage RV pacing.
Conclusions. Significant lead-induced TR is associated with poor long-term prognosis.
Introduction
Trivial tricuspid regurgitation (TR) is a common echocardiographic finding in healthy individuals. However, significant TR (grade ≥2) has been shown to be associated with poor prognosis, regardless of the underlying cardiac pathology. Significant TR may be a primary valvular disease (due to valve lesion) or secondary to tricuspid annular dilatation and/or RV remodelling. In addition, placement of an RV (trans-tricuspid) lead has also been associated with a higher risk of TR. However, the incidence of lead-induced TR, time course and effects on long-term outcome remain unknown. Previous studies have reported the incidence of TR immediately after implantation, focusing on the potential mechanisms of valve dysfunction (perforation, impingement, adherence to the leaflets). However, data on the long-term incidence of TR after device implantation and, more importantly, data on the impact of significant TR on cardiac performance and clinical outcome, are still lacking. Increasing treatment with devices, with growing numbers of implanted pacemakers (PMs) and cardioverter-defibrillators (ICDs), and ageing of the population may result in an increased incidence of lead-induced TR, with important clinical consequences. Therefore, the objective of this evaluation was first, to assess the incidence of significant lead-induced TR at long-term follow-up and second, to evaluate the impact of significant lead-induced TR on cardiac performance and on long-term prognosis.